
EPS HEP99 Giuseppe.Bagliesi@cern.ch 1

Object Oriented data analysis in ALEPH

Object Oriented data Analysis in
ALEPH

Giuseppe Bagliesi
INFN - Pisa

EPS HEP99 - Tampere
15-21 July 1999

EPS HEP99 Giuseppe.Bagliesi@cern.ch 2

Object Oriented data analysis in ALEPH

Outline

l The ALPHA++ project

l The current set-up

– The ALEPH data structure and its conversion to persistent objects

– Status of the ALEPH database (ALEPHDB)

– The analysis program

l Preliminary performances test

l Summary

EPS HEP99 Giuseppe.Bagliesi@cern.ch 3

Object Oriented data analysis in ALEPH

The ALPHA++ Project: goals...

l convert the ALEPH data from the BOS bank (Zebra-like style)
into persistent objects and write them to a object database
(Objectivity/Objectivity/DBDB)

l rewrite a mini-version of the ALEPH analysis package ALPHA in
an object oriented language (C++), based on the Objectivity
database

l compare standard and OO performance with regard to efficient
access of the data

EPS HEP99 Giuseppe.Bagliesi@cern.ch 4

Object Oriented data analysis in ALEPH

The ALPHA++ Project: goals (II)

l test the software engineered by the RD45 and LHC++ projects.

l Provide some input/experience for a possible archiving of
ALEPH’s data

l Give an opportunity to learn OO programming and design

EPS HEP99 Giuseppe.Bagliesi@cern.ch 5

Object Oriented data analysis in ALEPH

The ALPHA++ project: status

l Release 4.0:

– upgrade to Objy Version 5.1

– move from HP to DEC (the preferred ALEPH platform is on Digital Unix)

– release 2.0 (beta) of the Analysis package

– ~ 8GB of data written on the Objy/DB

EPS HEP99 Giuseppe.Bagliesi@cern.ch 6

Object Oriented data analysis in ALEPH

The ALEPH data structure
l Aleph uses BOS for the memory management:

– Event data are in memory in COMMON/BCS/IW(...)
– BOS provides the I/O stuff and the utilities to “navigate” in BCS through the BANK

concept

l The ALEPH data are organized in BANKS

l The BANKS are described in an “almost” OO language: ADAMO

l ADAMO offers a conversion to C headers files (structures)

l The translation ADAMO DDL ↔ C++ class is trivial

EPS HEP99 Giuseppe.Bagliesi@cern.ch 7

Object Oriented data analysis in ALEPH

Example: The FRFT bank

ADAMO DDL

FRFT
 : ’Global Geometrical track FiT
 NR=0.(JUL)\
 Number of words/track\
 Number of tracks’

 STATIC
 = (InverseRadi = REAL [*,*],
 TanLambda = REAL [*,*],
 Phi0 = REAL [0.,6.3],
 D0 = REAL [-180.,180.],
 Z0 = REAL [-220.,220.],
 Alpha = REAL [-3.15,3.15],
 EcovarM(21) = REAL [*,*],
 Chis2 = REAL [0.,*],
 numDegFree = INTE [0,63],
 nopt = INTE [0,149]
);

C++ CLASS

class FRFT {
public:
// default constructor
 FRFT() {}

 float InverseRadi;
 float TanLambda;
 float Phi0;
 float D0;
 float Z0;
 float Alpha;
 float EcovarM[21];
 float Chis2;
 int numDegFree;
 int nopt;
};

EPS HEP99 Giuseppe.Bagliesi@cern.ch 8

Object Oriented data analysis in ALEPH

The Objectivity DDL structure

AlephBank

void setname(char* name)

int LoadFromMem(int* p)

char*4 _bankname

ooVarray(NAME) NAME_Table

int LoadFromMem(int* p)

NAME_Bank NAME
float InverseRadi;
float TanLambda;
float phi0;
….

ooObj

NAME=FRFT
=FRTL
=

In total : 173 banks!!

EPS HEP99 Giuseppe.Bagliesi@cern.ch 9

Object Oriented data analysis in ALEPH

The Database structure

Container

Runs

Container

Events_<run#>

Container

Banks_<run#>

Database 1

Database 2

Federated Database

Run
Event

Event

Bank

Bank

Bank

EPS HEP99 Giuseppe.Bagliesi@cern.ch 10

Object Oriented data analysis in ALEPH

Status of the Aleph Database (ALEPHDB)

l Database populated with ~100K 1994 data and ~20K MC events
l In total ~ 8GB written on the Objy database including some LEP2 data
l The ootidy function saves ~5% of the space in the Objy database

Event
type

Number of
events

Size/event
Objy

Time/event
Write

Size/event
EPIO

Banks/event

POT 1994 102784 12 KB 17 msec 9.5 KB ~19
Class 16 6197 145 KB 111 msec 114 KB ~240

MC 1994
QQ events

17678 150 KB 99 msec 124 KB ~177

CPU Alpha 8400: 185 CERN units

Class 16 events: hadronic Z decays

EPS HEP99 Giuseppe.Bagliesi@cern.ch 11

Object Oriented data analysis in ALEPH

Status of ALPHA++

l Two simple C++ programs exist:

– populateDb:
l read the aleph EPIO data files and populate the Objectivity/DB

– readDb:
l Loop over the events and over the banks
l Copy the BANKS from Objectivity in memory to the BOS common (FORTRAN)

l With the banks stored in the BOS common it is possible:
– To run the “standard” ALPHA reading the events from Objectivity and calling the FORTRAN

from C++

– To run DALI (the ALEPH event display), reading the events from Objectivity

– To simplify the development of the OO analysis program by using many algorithms already
developed in FORTRAN

EPS HEP99 Giuseppe.Bagliesi@cern.ch 12

Object Oriented data analysis in ALEPH

Session

Analyzer Iterator Finder Bankcopier
calls

calls starts starts invokes

startsstartsstarts

cards card reader scanbook
database

db

asks

reads

starts
asks

knows

Run Event Tag Object

gives gives gives gives

Link

Locker

Track 4MTr CalObj

Eflow AlephBa spef.Ba

0:n

0:n

sets asks copies

constants

queries

re
fe

rs
 to

re
fe

rs
 to

refers t
o

re
fe

rs
 to

Preliminary analysis model

EPS HEP99 Giuseppe.Bagliesi@cern.ch 13

Object Oriented data analysis in ALEPH

The analysis program (ALPHA)
l How does the ALEPH analysis program (ALPHA) work ?
l Two basic “Objects”:

– “Tracks” (data structure QVEC)
l charged tracks (TPC)
l photons (ECAL)
l Energy flow Objects (TPC + Calorimeters)

– “Vertices” (data structure QVRT)
l Main Vertex (holds the position of the interaction point)
l General Vertex (reconstructed secondary vertices)

– In addition it is possible to “lock” or “unlock” single objects in order to
select them in the current analysis

l many algorithms are applied only to “unlocked” objects (jet finder, thrust, eflow ...)

EPS HEP99 Giuseppe.Bagliesi@cern.ch 14

Object Oriented data analysis in ALEPH

The analysis program (ALPHA++)
l Basic ideas:

– put a layer between database and analysis
– transient objects are built from the persistent ones, and the analysis runs

only on these transient objects
l Practical choice: develop a preliminary “FORTRAN wrapped” analysis

program
l in a short time scale, an analysis program already working has been developed
l use this preliminary version as a basis to develop new C++ code and algorithms

l For each event:
– the relevant persistent classes are read from the ALEPHDB and the corresponding

BOS banks are filled;

– the internal QVEC and QVRT data structures are filled;

– the transient C++ classes are instantiated using the data contained in QVEC and
QVRT

EPS HEP99 Giuseppe.Bagliesi@cern.ch 15

Object Oriented data analysis in ALEPH

The analysis program (contd...)

“TRACKS” “VERTICES”

The current version of the ALPHA++ analysis program is based on the
same ideas and data structures of ALPHA

EPS HEP99 Giuseppe.Bagliesi@cern.ch 16

Object Oriented data analysis in ALEPH

The analysis objects...

l In ALPHA the “tracks” have
common attributes:
– QP, QX, QY, QZ …

l Reproduce the ALPHA structure

– tracks, Eflow, Calobjects, photons…
l Inheritance from the abstract class AlObject

– Vertices
l Inheritance from AlVertex

l Abstract Interface

class AlObject {
 public:
 ~AlObject();
 virtual float QP() = 0;
 virtual float QX() = 0;
 virtual float QY() = 0;
 virtual float QZ() = 0;
 virtual float QE() = 0;
 virtual float QM() = 0;
 virtual float QCH() = 0;
};

EPS HEP99 Giuseppe.Bagliesi@cern.ch 17

Object Oriented data analysis in ALEPH

Analysis program (reverse engineered)

Alpha++ Analysis program
Reverse engineered with
Rational Rose

“Tracks”“Vertices”

“Event”

EPS HEP99 Giuseppe.Bagliesi@cern.ch 18

Object Oriented data analysis in ALEPH

Preliminary performance test: setup
l Fortran

– Read pre-selected hadronic events
from EDIRs (class 16 bit)

– Unpack the relevant BOS banks in
memory

– Fill the QVEC and QVRT data
structure

– Run a simple FORTRAN event
selection program

l QCD events pre-selection

– Fill some HBOOK histograms

l C++
– Loop over the events in the

OBJY/DB asking for the class 16 bit

– Read in memory the relevant
classes from Objy

– Unpack the corresponding BOS
banks (FORTRAN calls)

– Fill the QVEC and QVRT data
structure (FORTRAN calls)

– Run a simple C++ event selection
program

l QCD events pre-selection

– Fill some HBOOK histograms
(FORTRAN calls)

EPS HEP99 Giuseppe.Bagliesi@cern.ch 19

Object Oriented data analysis in ALEPH

Event selection
QCD event selection

l Class 16 events
l Good Tracks:

– Ntpc >=4
– Pt>0.2 Gev

– abs(cos(θ)) < 0.9
– d0<2. cm
– z0<10. cm

l Nsel Track >=5
l Esel Track >= 15. Gev

All events

Selected events

Ntrack/event

EPS HEP99 Giuseppe.Bagliesi@cern.ch 20

Object Oriented data analysis in ALEPH

Preliminary performance test: results

CPU time/ev
(class 16) (sec)

CPU time/ev
(all) (sec)

Init. Time
(sec)

ALPHA 15.1x10-3 1.9x10-3 1.48
ALPHA++ 29x10-3 2.6x10-3 1.75

•ALPHA++ does also the unpacking/filling of the BOS banks in memory

•The event analysis time is negligible

•The histogram filling time is negligible

CPU Alpha 8400: 185 CERN units

The factor ~2 difference in CPU time between ALPHA++ and ALPHA
is due to the I/O from Objy/DB

EPS HEP99 Giuseppe.Bagliesi@cern.ch 21

Object Oriented data analysis in ALEPH

Summary
l The setup of an OO database was rather simple and successful

– Work done part-time by few people

l A working OO analysis program has been developed and some
preliminary performance tests have been done

l We have not yet tested (in detail) LHC++ analysis tools such as
IRIS EXPLORER and HTL (or HistOOgrams)
– for simplicity we are still using wrapped fortran calls to HBOOK

l next release of the analysis program:
– use STL (it seems to work on DEC now...)
– try HTL and pawHTL

