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Object Oriented data analysis in ALEPH

Outline

l The ALPHA++ project

l The current set-up

– The ALEPH data structure and its conversion to persistent objects

– Status of the ALEPH database (ALEPHDB)

– The analysis program

l Preliminary performances test

l Summary
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Object Oriented data analysis in ALEPH

The ALPHA++ Project: goals...

l convert the ALEPH data from the BOS bank (Zebra-like style)
into persistent objects and write them to a object database
(Objectivity/Objectivity/DBDB)

l rewrite a mini-version of the ALEPH analysis package ALPHA in
an object oriented language (C++), based on the Objectivity
database

l compare standard and OO performance with regard to efficient
access of the data
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Object Oriented data analysis in ALEPH

The ALPHA++ Project: goals (II)

l test the software engineered by the RD45 and LHC++ projects.

l Provide some input/experience for a possible archiving of
ALEPH’s data

l Give an opportunity to learn OO programming and design
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Object Oriented data analysis in ALEPH

The ALPHA++ project: status

l Release 4.0:

– upgrade to Objy Version 5.1

– move from HP to DEC (the preferred ALEPH platform is on Digital Unix)

– release 2.0 (beta) of the Analysis package

– ~ 8GB of data written on the Objy/DB



EPS HEP99 Giuseppe.Bagliesi@cern.ch 6

 
Object Oriented data analysis in ALEPH

The ALEPH data structure
l Aleph uses BOS for the memory management:

– Event data are in memory in COMMON/BCS/IW(...)
– BOS provides the I/O stuff and the utilities to “navigate” in BCS through the BANK

concept

l The ALEPH data are organized in BANKS

l The BANKS are described in an “almost” OO language: ADAMO

l ADAMO offers a conversion to C headers files (structures)

l The translation ADAMO DDL ↔ C++ class is trivial



EPS HEP99 Giuseppe.Bagliesi@cern.ch 7

 
Object Oriented data analysis in ALEPH

Example: The FRFT bank

ADAMO DDL

FRFT
      :    ’Global Geometrical track FiT
               NR=0.(JUL)\
              Number of words/track\
              Number of tracks’

    STATIC
     = (InverseRadi   = REAL [*,*],
         TanLambda    = REAL  [*,*],
         Phi0                = REAL  [0.,6.3],
         D0                  = REAL  [-180.,180.],
         Z0                   = REAL  [-220.,220.],
         Alpha              = REAL  [-3.15,3.15],
         EcovarM(21)  = REAL  [*,*],
         Chis2              = REAL [0.,*],
         numDegFree  = INTE [0,63],
         nopt                = INTE [0,149]
);

C++ CLASS

class FRFT {
public:
// default constructor
  FRFT() {}

  float  InverseRadi;
  float  TanLambda;
  float  Phi0;
  float  D0;
  float  Z0;
  float  Alpha;
  float  EcovarM[21];
  float  Chis2;
  int  numDegFree;
  int  nopt;
};
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Object Oriented data analysis in ALEPH

The Objectivity DDL structure

AlephBank

void setname(char* name)

int LoadFromMem(int* p)

char*4  _bankname

ooVarray(NAME) NAME_Table

int LoadFromMem(int* p)

NAME_Bank NAME
float InverseRadi;
float TanLambda;
float phi0;
….

ooObj

NAME=FRFT
=FRTL
=  . . . . 

In total : 173 banks!!
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Object Oriented data analysis in ALEPH

The Database structure
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Object Oriented data analysis in ALEPH

Status of the Aleph Database (ALEPHDB)

l Database populated with ~100K 1994 data and ~20K MC events
l In total ~ 8GB written on the Objy database including some LEP2 data
l The ootidy function saves ~5% of the space in the Objy database

Event
type

Number of
events

Size/event
Objy

Time/event
Write

Size/event
EPIO

Banks/event

POT 1994 102784 12 KB 17 msec 9.5 KB ~19
Class 16 6197 145 KB 111 msec 114 KB ~240

MC 1994
QQ events

17678 150 KB 99 msec 124 KB ~177

CPU Alpha 8400: 185 CERN units

Class 16 events: hadronic Z decays
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Object Oriented data analysis in ALEPH

Status of ALPHA++

l Two simple C++ programs exist:

– populateDb:
l read the aleph EPIO data files and populate the Objectivity/DB

– readDb:
l Loop over the events and over the banks
l Copy the BANKS from Objectivity in memory to the BOS common (FORTRAN)

l With the  banks stored in the BOS common it is possible:
– To run the “standard” ALPHA reading the events from Objectivity and calling the FORTRAN

from C++

– To run DALI (the ALEPH event display), reading the events from Objectivity

– To simplify the development of the OO analysis program by using many algorithms already
developed in FORTRAN
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Object Oriented data analysis in ALEPH
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Object Oriented data analysis in ALEPH

The analysis program (ALPHA)
l How does the ALEPH analysis program (ALPHA) work ?
l Two basic “Objects”:

– “Tracks” (data structure QVEC)
l charged tracks (TPC)
l photons (ECAL)
l Energy flow Objects (TPC + Calorimeters)

– “Vertices” (data structure QVRT)
l Main Vertex (holds the position of the interaction point)
l General Vertex (reconstructed secondary vertices)

– In addition it is possible to “lock” or “unlock” single objects in order to
select them in the current analysis

l many algorithms are applied only to  “unlocked” objects (jet finder, thrust, eflow ...)



EPS HEP99 Giuseppe.Bagliesi@cern.ch 14

 
Object Oriented data analysis in ALEPH

The analysis program (ALPHA++)
l Basic ideas:

– put a layer between database and analysis
– transient objects are built from the persistent ones, and the analysis runs

only on these transient objects
l Practical choice: develop a preliminary “FORTRAN wrapped” analysis

program
l in a short time scale, an analysis program already working has been developed
l use this preliminary version as a basis to develop new C++ code and algorithms

l For each event:
– the relevant persistent classes are read from the ALEPHDB and the corresponding

BOS banks are filled;

– the internal QVEC and QVRT data structures are filled;

– the transient  C++ classes are instantiated using the data contained in QVEC and
QVRT
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Object Oriented data analysis in ALEPH

The analysis program (contd...)

“TRACKS” “VERTICES”

The current version of the ALPHA++ analysis program is based on the
same ideas and data structures of ALPHA
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Object Oriented data analysis in ALEPH

The analysis objects...

l In ALPHA the “tracks” have
common attributes:
–  QP, QX, QY, QZ …

l Reproduce the ALPHA structure

– tracks, Eflow, Calobjects, photons…
l Inheritance from the abstract class AlObject

– Vertices
l Inheritance from AlVertex

l Abstract Interface

class AlObject {
 public:
  ~AlObject();
  virtual float QP() = 0;
  virtual float QX() = 0;
  virtual float QY() = 0;
  virtual float QZ() = 0;
  virtual float QE() = 0;
  virtual float QM() = 0;
  virtual float QCH() = 0;
};
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Object Oriented data analysis in ALEPH

Analysis program (reverse engineered)

Alpha++ Analysis program
Reverse engineered with
Rational Rose

“Tracks”“Vertices”

“Event”
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Object Oriented data analysis in ALEPH

Preliminary performance test: setup
l Fortran

– Read pre-selected hadronic events
from EDIRs (class 16 bit)

– Unpack the relevant BOS banks in
memory

– Fill the QVEC and QVRT data
structure

– Run a simple FORTRAN event
selection program

l QCD events pre-selection

– Fill some HBOOK histograms

l C++
– Loop over the events in the

OBJY/DB asking for the class 16 bit

– Read in memory the relevant
classes from Objy

– Unpack the corresponding BOS
banks (FORTRAN calls)

– Fill the QVEC and QVRT data
structure (FORTRAN calls)

– Run a simple C++ event selection
program

l QCD events pre-selection

– Fill some HBOOK histograms
(FORTRAN calls)
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Object Oriented data analysis in ALEPH

Event selection
QCD event selection

l Class 16 events
l Good Tracks:

– Ntpc >=4
– Pt>0.2 Gev

– abs(cos(θ)) < 0.9
– d0<2. cm
– z0<10. cm

l Nsel Track >=5
l Esel Track >= 15. Gev

All events

Selected events

Ntrack/event
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Object Oriented data analysis in ALEPH

Preliminary performance test: results

CPU time/ev
(class 16) (sec)

CPU time/ev
(all) (sec)

Init. Time
(sec)

ALPHA 15.1x10-3 1.9x10-3 1.48
ALPHA++ 29x10-3 2.6x10-3 1.75

•ALPHA++ does also the unpacking/filling of the BOS banks in memory

•The  event analysis time is negligible

•The histogram filling time is negligible

CPU Alpha 8400: 185 CERN units

The factor ~2 difference in CPU time between ALPHA++ and ALPHA
is due to the I/O from Objy/DB
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Object Oriented data analysis in ALEPH

Summary
l The setup of an OO database was rather simple and successful

– Work done part-time by few people

l A working  OO analysis program has been developed and some
preliminary performance tests have been done

l We have not yet tested (in detail) LHC++ analysis tools such as
IRIS EXPLORER and HTL (or HistOOgrams)
– for simplicity we are still using wrapped fortran calls to HBOOK

l next release of the analysis program:
– use STL (it seems to work on DEC now...)
– try HTL and pawHTL


